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Summary

1. Wildlife managers are limited in the inferences they can draw about low density populations.

These limits are imposed by biases inmonitoring data not regularly accounted for.

2. We developed a Bayesian hierarchical model to correct biases arising from imperfect detection

and spatial autocorrelation. Our analysis incorporated model selection uncertainty by treating

model probabilities as parameters to be estimated in the context of model fitting. We fitted our

model to count data from a monitoring programme for the mountain plover Charadrius montanus,

a low density bird species inNebraska, USA.

3. Our results demonstrated that previous accounts of the abundance and distribution of plovers in

Nebraska were impacted by low detection probabilities (�5–20%). Uncorrected relative abundance

estimates showed that the average number of birds per agricultural section increased over time,

whereas corrected estimates showed that average abundance was stable.

4. Our method spatially interpolated relative abundance to produce distribution maps. These pre-

dictions suggested that birds were selecting some sites more frequently than others based on some

habitat feature not explored in our study. Variation in mountain plover abundance appeared more

heavily influenced by changes in the number of individuals occupying a few high quality sites, rather

than from changes in abundance across many sites. Thus, conservation efforts may not be as effi-

cient when focusing on low tomoderate quality sites.

5. Synthesis and applications. Managers who must make decisions based on data-poor systems

should adopt rigorous statistical approaches for drawing inferences. Spatial predictions provide

information for deciding where to implement management, which is just as important as knowing

what kind of management to apply. Our approach provides a step in the direction of making the

biological signal in data-poor monitoring programmes more informative for conservation and

management.

Key-words: Bayesian hierarchical models, detection error, modelling uncertainty, spatial

statistics

Introduction

Wildlife managers are limited in the inferences they can draw

from surveys of low density populations. These limits are par-

tially caused by biases in monitoring data induced by detection

errors and errors arising from spatial autocorrelation. Detec-

tion errors arise in surveys as a result of factors such as species-

specific behaviour or differing observer abilities (Royle 2004;

Field, Tyre & Possingham 2005a; Johnson 2008). Accounting

for variation in detectability has garnered much attention in

the ecological literature because it erodes the power to estimate

population parameters (Royle & Nichols 2003; Tyre et al.

2003; Field et al. 2005b).

Failure to account for detectability also affects our under-

standing of species’ distributions. This is important for agen-

cies tasked with targeting management. Often, distributional

data is derived from the location of positive detections in

the context of monitoring (e.g. McConnell et al. 2009).

However, methods such as point counts or presence–absence
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surveys do not cover all occupied sites which could make

observed distributions biased. Rigorous distributional pre-

dictions can be derived from capturing spatial autocorrela-

tion between observations and using estimates of spatial

dependence to map predicted abundance or occupancy (e.g.

Latimer et al. 2006; Thogmartin, Knutson & Sauer 2006).

Few studies have dealt with both detection and spatial cov-

erage biases in the context of estimating abundance (but see

Royle et al. 2007).

These combined errors could be of concern for low density

populations for two reasons. First, low density populations are

difficult to find and it would be helpful to know whether this

low density is because of a biological process that warrants

management action. Secondly, the non-random distribution of

habitat is a likely source of spatial autocorrelation in count

data (Legendre 1993). Non-random sampling of habitat

patches will increase detections, but will also compromise the

estimation of variability of abundance within a particular

region. Therefore, accounting for the spatial non-indepen-

dence of sampling sites and detection error is necessary to accu-

rately predict a species’ abundance and distribution.

We developed and applied a Bayesian hierarchical model-

ling approach that accounts for detection and spatial errors in

count data. Our approach also deals with model selection

uncertainty by treating model selection as a part of the fitting

procedure. We fitted our model to data from a 3 year monitor-

ing programme for the mountain plover Charadrius montanus,

a low density bird species in Nebraska, USA. We had four

main goals with this study. First, to compare detection-

corrected and uncorrected relative abundance estimates for

mountain plovers. Secondly, to compare mountain plover

abundance between two types of agricultural habitats: grazed

lands and arable fields. Thirdly, to compare abundance

between sites that were actively managed to improve the repro-

ductive success of plovers versus those that were not. Lastly, to

generate predictions of mountain plover distributions to

informmanagement.

Materials and methods

CASE STUDY: THE MOUNTAIN PLOVER

Mountain plovers are of conservation concern within North America

(Knopf & Wunder 2006). The eastern edge of this species’ range

extends into a small portion of Nebraska, USA, where previous sur-

veys indicated that plovers rarely occupied the state (Clausen 1990;

Dinsmore 1997). Bly, Snyder & VerCauteren (2008) conducted patch

surveys in the southwestern corner of the Nebraska panhandle and

concluded that mountain plovers were more numerous than previ-

ously believed. Thus, it is likely that mountain plovers in Nebraska

had been under-sampled. This is problematic for the conservation of

this population for at least two reasons. First, the population in

Nebraska is at the edge of the species’ range and might be expected to

experience wide fluctuations. Therefore, distinguishing between mea-

surement and process error is crucial for conservation. Secondly,

identifying locations that have high conservation value will be com-

promised by biased abundance estimates. This could lead to ineffi-

cient ormisdirected allocation of conservation effort.

Numerous studies have recognized that mountain plovers are diffi-

cult to detect because they are cryptically coloured and often encoun-

tered in relatively low densities (Knopf &Wunder 2006). Past studies

have accounted for detectability by using distance sampling (Wunder,

Knopf & Pague 2003; Plumb, Knopf & Anderson 2005), mark-

recapture methods (Dinsmore, White & Knopf 2003), repeated visits

(Dreitz, Lukacs & Knopf 2006; Tipton, Dreitz & Doherty 2008) and

removal methods (McConnell et al. 2009; Tipton, Doherty & Dreitz

2009).

STUDY AREA

Data used in this study came from surveys described in Bly, Snyder &

VerCauteren (2008). These surveys were conducted in the southwest-

ern portion of the Nebraska panhandle (Kimball, Banner and Chey-

enne counties) and covered approximately 4500 km2. Roughly 90%

of the land in this region was privately owned and used for agricul-

tural production (Hiller et al. 2009). Approximately 59% of the land-

scape was used for grazing livestock and the remaining 41%was used

for growing crops. Both intensively grazed lands with bare ground

and wheat fields provide mountain plovers with breeding habitat in

Nebraska: relatively flat areas with greater than 30% bare ground

(Knopf & Miller 1994). Mountain plovers nest in agricultural fields,

where their nests are exposed to tillage operations (Knopf & Rupert

1999; Shackford, Leslie & Harden 1999). In Nebraska, the Rocky

Mountain Bird Observatory and Nebraska Game and Parks Com-

mission had been applying a nest marking management programme

in some of the same areas that the count data was recorded within.

The nest marking programme focused on reducing nest loss due to

agricultural tillage by marking nests so that soil tillage operations

could avoid them.

SURVEY METHODOLOGY

Data were collected in the 2005, 2006 and 2007 breeding seasons.

Counts were conducted within the primary land division unit,

2Æ56 km2 sections. Our analysis was based on 102 randomly selected

sections in 2005 (43 previously occupied sections, 59 randomly

selected sections), 111 sections in 2006 (73 previously occupied sec-

tions, 38 randomly selected sections), and 150 sections in 2007 (88 pre-

viously occupied sections, 62 randomly selected sections). In each

section, surveyors aimed to maximize the number of detections by

selecting a 4 ha patch that contained suitable nesting habitat. Scaling

from the level of the patch to the agricultural section has the potential

to influence our ability to accurately predict mountain plover abun-

dance. For instance, if the patch contained a portion of the plovers in

a section, scaling could underpredict average abundance. However,

we were only interested in predicting relative abundance at the scale

of the section so scaling issues were not as important for our analysis

as theymight be for finer scale habitat selection analyses.

In all three years, roughly 25% of the patches were located in

rangeland sections and about 75% of the patches were located in ara-

ble sections. Surveyors visited each patch three times in 2005, four

times in 2006 and three times in 2007. Surveys were conducted from

mid-April to the beginning of June each year. Different observers con-

ducted the surveys in 2005 and 2006, but were the same in 2006 and

2007. Each visit consisted of two three-minute point counts: one prior

to playing a territorial or alarm call and one post call playback. Call

playbackwas standardized so that calls were played in the same direc-

tion and location during each visit. Surveys were conducted between

sunrise and 10:00 or between 17:00 and sunset when it was not raining

andwinds were<32 km h)1.
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STATIST ICAL ANALYSIS

We performed all analyses using the statistical computing language R

(R Development Core Team 2008). We used a hierarchical Bayesian

approach because it accommodated multi-level processes and

included prior information. Our approach was based on the work of

Royle, Link& Sauer (2002) andRoyle et al. (2007).

Ourmodel of the count process followedRoyle (2004):

pðyijjki; pÞ ¼
YI
i¼1

YJ
j¼1

Binðyij;Ni; pÞ
 !

PoisðNi; kiÞ
 !

eqn 1

where yij were observed counts arising from a binomial process at

patch i and visit j, Ni was the unobserved patch-specific abun-

dance and p was the rate at which individuals were detected.

Notice that including N in the binomial model says that there

was some true number of individuals, but that observers could

only find some proportion of them. We assumed that N was dis-

tributed as a Poisson process where ki was the patch specific Pois-

son mean (i.e. detection-corrected average relative abundance).

We assumed that N had a constant uniform prior distribution.

We believe our method corrected our observations for detection

error based on simulations (not presented). Others have found

that similar methods may not always yield fully corrected esti-

mates of ‘true’ abundance (Efford & Dawson 2009). Thus, to be

conservative, we refer to our estimates as corrected relative abun-

dance.

We modelled detection rate p as a function of temporal and obser-

ver-specific covariates using a logistic model. We assumed that p did

not vary across sites. This assumption was reasonable because our

sites did not contain factors, such as vegetation, that would make

detection vary. We modelled the patch-specific mean abundance u(s)

using an overdispersed log linear model:

uðsÞ ¼ logeðkðsÞÞ ¼ lðsÞ þ zðsÞ þ eðsÞ eqn 2

where lðsÞ ¼
P

b0 þ b1x1 þ . . .þbmxmwas the sum of spatially

indexed covariates, z(s) was a random effect representing spatially

autocorrelated error, and e(s) was a random effect representing

uncorrelated residual error. We assumed a normal prior with a

mean of zero and variance of 10 on the detection covariates and

a constant prior (i.e. equal to 1) on the abundance covariates.

Each of the sets of covariate parameters was drawn from a set of

candidate models with a uniform prior (1 ⁄ number of models). By

updating the model parameters conditionally on the chosen

model, we model averaged our posterior estimates and simulta-

neously estimated the probability of the model. We used the term

‘model averaging’ (sensu Burnham & Anderson 2002) to refer to

the process of estimating model parameters conditional on model

probabilities. The frequency with which each model was drawn

can then be used to calculate Bayes’ factors, which we used to

calculate posterior model probabilities (Link & Barker 2006).

Our model structure allowed us to include the effects of spatial

autocorrelation in terms of a departure from the systematic mean l.
The z(s) term was modelled as a multivariate normal distribution:

z �MVNð0;r2
zKÞ, where r2

z was the spatial variance andKwas a cor-

relation function that specified how correlated the error terms were.

We used an exponential correlation model: K ¼ e� di�dxj j=h, where

h represents the degree of spatial dependence in metres (i.e. range

parameter in geostatistics). We assumed a uniform prior on

h (U(0,10 000)). We chose this correlation function because there is

little theoretical justification for choosing complicated multipara-

meter correlation functions (Royle, Link& Sauer 2002). The uncorre-

lated error term represents the small scale variation in the data and

was included to help account for overdispersion in our observations.

We modelled uncorrelated error as e � Normalð0;r2
e Þ, where r2

e was

the residual variance. In our model, both r2
zand r2

ewere parameter-

ized as sz ¼ 1=r2
zandse ¼ 1=r2

e , known as Bayesian precision para-

meters. We assumed inverse gamma priors with a mean of one and a

variance of 10 on these parameters.

We used Markov chain Monte Carlo (MCMC) simulation to fit

our models (Gilks, Richardson & Spiegelhalter 1995). Our algorithm

was a Metropolized Gibbs sampler because it combined Gibbs sam-

pling when the full conditional distribution was available and

employedMetropolis–Hastings (M–H) when the full conditional was

not available, as when updating based on the mixture likelihood (1)

(Gilks, Richardson & Spiegelhalter 1995). We hierarchically centred

our continuous covariates by subtracting the mean of each covariate

from the data and dividing by the standard deviation in order to pro-

mote better mixing. We made additional improvements in mixing by

reparameterizing the systematic mean and spatial random effect as:

z �MVNðl;r2
zKÞand u �MVNðz;r2

zKÞ(Gelfand, Sahu & Carlin

1995; Royle et al. 2007). For each iteration, we estimated the model

parameters and then made spatial predictions by making draws from

the full conditional distribution (Appendix S1–S4, Supporting infor-

mation).

We analysed data for each year separately, with and without prior

information on detectability.We assumed uninformative priors on all

detection parameters for the 2005 data. We used the posteriors esti-

mated from 2005 as priors on the 2006 analysis, and we used 2006

posteriors as priors on the 2007 analysis. Prior information did

slightly influence our posterior detection parameter estimates and

also reduced the posterior variance of those estimates, but did not

influence our posterior abundance estimates. Our results were based

onmodels including prior information.

We ran the models for 110 000 iterations, using three chains per

model. We used more than one chain to ensure that we converged on

the same answer each time we ran the algorithm. We discarded the

first 10 000 iterations as a burn-in period. We made our inferences

from the last 100 000 iterations, and to further reduce serial autocor-

relation we thinned the chains using every 100th iteration. One chain

took approximately 5–7 h to run on a computer with a 2Æ66 GHz pro-

cessor. This long running timewas largely due to themultivariate nor-

mal formulation of the spatial process, which is generally regarded as

being more flexible than faster running conditional autoregressive

models. Due to the long periods of time needed to run each model we

adopted a parallel processing approach.

CANDIDATE MODELS

We considered four abundance models. Our first model assumed

that average abundance was similar across patches (Null). Our sec-

ond model contained an effect of the linear distance between the

centre of the patch and the nearest road (Distance). We considered

this because mountain plovers may select or avoid sites that experi-

ence more anthropogenic disturbance. Our third model included a

binary variable (Grazed) for whether the site was in an arable field

(0) or in grazed land (1). We considered these effects because

mountain plover abundance could be higher in patches that were

more similar to native grasslands (i.e. pastures and grazed lands)

compared to arable fields. Our fourth model included a binary vari-

able that described whether nest protection measures were applied

in the section (1) or not (0). We considered this because mountain

plovers might prefer sites with ongoing management. We did not

consider models without the spatial random effects because we
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wanted to make spatially explicit predictions of mountain plover

abundance.

We considered three detection models. All three models contained

an intercept and an effect of call playback (Call). We included this

parameter in all the models because visual inspection of the data

showed higher maximum counts after the call was played. Thus, our

first model contained only an effect of call. Our second model added

an observer effect (Observer). For these surveys there were only two

observers in each year. We built our third model to include the effects

of call, a quadratic effect of the time of day (Time + Time2) and a

quadratic effect of the ordinal day in the breeding season (Day +

Day2).

We presented all of our parameter estimates as posterior means

and standard errors. These values were calculated by computing the

mean and standard error of each parameter from values in the Mar-

kov chains. We then made predictions using our posterior parameter

estimates. We presented these predictions as means with 95% Bayes-

ian confidence intervals (BCI). Our spatial mountain plover predic-

tions were made using the centre coordinates of 1720 sections within

the survey area. For each iteration of the algorithmwe drew 1720 pre-

dicted spatial random effects for each of the sections from the poster-

ior predictive distribution (Royle, Link & Sauer 2002). We made

spatial abundance predictions by combining these spatial random

effects with the estimated model parameters for landuse. Within each

section we specified whether the dominant form of landuse was arable

land or grazed land using 2005 landcover data (obtained from

Nebraska Department of Natural Resources) in ArcGIS 9.2 (ESRI

2008).

Results

We detected a total of 18 birds in 2005, 26 birds in 2006 and 86

birds in 2007. Thus, our surveys yielded low observed abun-

dances of mountain plovers across years, but there was an

increase in mean naı̈ve abundances over time (Fig. 1a). Our

results suggested that this increase was probably a result of

increasing detectability across years (Fig. 1a). In our model

selection exercise, we found that the detection errormodel with

the highest posterior probability in 2005 included an effect of

observer and call, whereas themodel with the highest posterior

in 2006 and 2007 contained call and time effects (Table 1). Our

posterior parameter estimates suggested that playing a call had

the strongest effect on detection error (Table 2). In general,

playing a call increased detectability within each year and

appeared to have caused the most dramatic increase in 2007

(Fig. 2). We found only weak effects of observer and time on

detection error (Table 2).

Model selection results showed a high degree of uncertainty

for models of abundance (Table 1).We found that average rel-

ative abundance seemed to have remained fairly constant

through time (Fig. 1a). In terms of parameter effects, we found

no effect of distance from road on mountain plover relative

abundance (Table 2).We did, however, find a slight increase in

relative abundance for patches located in grazed land com-

pared to arable fields, and this effect was most pronounced in

2006 (Fig. 1b). We found virtually no correlation between nest

management and observed abundance (Table 2).

Our estimates of spatial autocorrelation in abundance

among patches varied between years with the range parameter

(h) being similar in 2005 and 2007, but lower in 2006 (Table 2).

This parameter was difficult to interpret, but generally it is

thought of as representing the distance at which the correlation

between points weakens by a factor of 0Æ37 (i.e. e)1 = 0Æ37;
Isaaks & Srivastava 1989). Across all 3 years, we found varia-

tion inmountain plover abundance could be attributed to vari-

ability between locations (ss) compared to variation within

each location (sg). Recall, that these were precision parameters

and must be inverse transformed. Our spatially explicit predic-

tions of abundance showed a patchy distribution of mountain

plovers across our study area (Fig. 3). This distributional pat-

tern also changed between years with 2006 showing a weaker

pattern compared with 2005 and 2007. Between years the

spatial distribution shifted from a western to a southern
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Fig. 1. (a) Mountain plover relative abundance estimates from

western Nebraska during the breeding seasons of 2005–2007. Closed

triangles represent mean naı̈ve abundance estimates (with 95% BCI)

based on the maximum number of observed individuals. Closed

circles represent posterior detection corrected model estimates of

mean relative abundance (with 95% BCI). (b) Bars represent poster-

ior mean model abundance estimates (with 95% BCI) for arable and

grazed patches over the course of 3 years.
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distribution. Assuming we made predictions within the region

of Nebraska wheremountain plovers are likely to be found, we

estimated the total abundance of plovers as 1650 (95% BCI:

400–6681); 1617 (95% BCI: 367–6966); and 1568 (95% BCI:

277–8681) for the 3 years, respectively.

Discussion

The primary uses of monitoring data in species conservation

should be to answer scientific questions or to assess the efficacy

of certain management practices (Nichols & Williams 2006).

Inferences based on naı̈ve estimates of abundance are likely to

impact which steps are taken in terms of interpreting results

and applying management action. For example, had we imple-

mented a management practice to improve breeding habitat

within agricultural sections in 2005, we would have drawn the

wrong conclusion about the impact of management on the

average number of birds expected in each section. Likewise,

had we not accounted for spatial error we might not have

detected changes in sections under management or identified

portions of the landscape that warranted further attention.

Table 2. Posterior parameter estimates (standard errors) of

abundance (k) and detection probability (p) on the linear scale

2005 2006 2007

log(k) )0Æ03 (0Æ07) )0Æ06 (0Æ08) 0Æ00 (0Æ07)
Distance 0Æ00 (0Æ03) 0Æ00 (0Æ03) 0Æ00 (0Æ03)
Grazing 0Æ03 (0Æ13) 0Æ15 (0Æ30) 0Æ04 (0Æ10)
Nests 0Æ01 (0Æ07) )0Æ01 (0Æ07) )0Æ06 (0Æ13)
logit(p) )4Æ65 (0Æ56) )4Æ25 (0Æ31) )3Æ14 (0Æ34)
Call 1Æ35 (0Æ41) 1Æ37 (0Æ27) 1Æ38 (0Æ15)
Observer 0Æ64 (0Æ58) 0Æ00 (0Æ03) 0Æ00 (0Æ01)
Time )0Æ30 (0Æ59) 0Æ01 (0Æ36) )0Æ42 (0Æ35)
Time2 0Æ99 (1Æ77) 1Æ61 (1Æ11) 2Æ09 (1Æ63)
Day )0Æ08 (0Æ15) )0Æ29 (0Æ12) )0Æ32 (0Æ23)
Day2 0Æ01 (0Æ10) 0Æ06 (0Æ08) 0Æ09 (0Æ08)
h 5360Æ86 (2790Æ35) 2893Æ75 (2586Æ74) 4196Æ95 (2277Æ51)
ss 4Æ03 (3Æ03) 3Æ78 (2Æ40) 1Æ86 (0Æ91)
sg 7Æ35 (4Æ52) 6Æ31 (4Æ20) 7Æ01 (4Æ61)

The covariates for abundance were the effect of distance from

road (Distance), landuse: arable field (Grazed = 0), grazed land

(Grazed = 1) and whether managed nests were absent

(Nests = 0) or present (Nests = 1). The detection covariates

were the effect of call (Call), effect of observer (Observer), as well

as a main and quadratic effect of both time and day. Additional

model parameters included the range of spatial autocorrelation

(h), spatial precision (ss) and residual precision (sg).

Table 1. Model selection table for linear models explaining variation

in abundance and detection probability of mountain plovers in

WesternNebraska for the 2005–2007 breeding seasons

2005 2006 2007

Abundance models

kNull 0Æ26 0Æ25 0Æ24
kDistance 0Æ26 0Æ27 0Æ27
kNests 0Æ24 0Æ25 0Æ27
kGrazed 0Æ25 0Æ23 0Æ22

Detection models

pCall 0Æ07 0Æ02 0Æ00
pCall + Observer 0Æ63 0Æ02 0Æ00
pCall + Time

2
+ Day

2 0Æ30 0Æ96 1Æ00

The abundance models included a null effect (Null), an effect of

distance from road (Distance), the presence (Nests = 1) or

absence (Nests = 0) of marked nests, and whether abundance

varied between arable crop fields (Grazed = 0) and grazed land

(Grazed = 1). The detection model set included a model with the

effect of call (Call), an effect of call and observer (Observer) and

quadratic effects of time of day (Time2) and ordinal day of the

breeding season (Day2). Model probabilities were calculated using

Bayes’ factors.
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Fig. 2. Detection probability estimates for mountain plover surveys

during the 2005–2007 breeding seasons. Bars represent the posterior

mean estimates of detection probability between two observers and

before and after alarm calls were played. Error bars represent 95%

BCI.
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Rather, our habitat effects would have told us that abundance

was largely similar across patches and that the expected num-

ber of birds within a sectionwas fairly uniform across the land-

scape. Therefore, in order to make progress in terms of

creating newmanagement plans for this species (or for any low

density species), a rigorous modelling approach is necessary to

make better sense of the data.

MOUNTAIN PLOVER ABUNDANCE

Our estimates of detection rate were, in general, lower than

those found elsewhere: 0Æ94–0Æ65 in Oklahoma, USA

(McConnell et al. 2009), 0Æ38 in Colorado, USA (Wunder,

Knopf & Pague 2003). The overall pattern in our results

mirrored those of other surveys designed to increase the

number of detections within sampling locations (e.g.

McConnell et al. 2009). Other studies of this species have

shown that increasing the number of visits to the same site

does reduce detection error (Dreitz, Lukacs & Knopf 2006).

While such strategies can reduce variation in detection error,

this reduction usually comes at the cost of increasing varia-

tion in abundance estimates (based on simulations, not

shown). The amount of effort invested in revisits could also

explain why we found a very weak effect of time on detec-

tion error. Dreitz, Lukacs & Knopf (2006) sampled some

sites as many as 12 times. In our study, effort remained fixed

at three to four visits because of personnel and financial con-

straints. Tipton, Dreitz &Doherty (2008) found similar results

for this species using fixed and comparatively low amounts of

sampling effort. Thus, studies designed to monitor low density

species should weigh the statistical trade-off between the num-

ber of sites and visits, as well as the financial trade-offs between

costs associated with increased effort and costs of making deci-

sions based on incorrect inferences (Field et al. 2004; Field,

Tyre & Possingham 2005a). Within the limits of our data, our

model-based estimates suggested that mountain plover relative

abundance was higher in Nebraska than previously suggested

in Bly, Snyder & VerCauteren (2008). Furthermore, past

claims about the size of this population in Nebraska were

probably confounded by chronic undersampling.

It would appear that mountain plover abundance did not

respond to the types of agricultural landuse we considered.

Our estimated effect of agricultural landuse was similar to that

found elsewhere (Dreitz, Lukacs&Knopf 2006; Tipton,Dreitz

& Doherty 2008; Tipton, Doherty & Dreitz 2009). There was

also a great deal of variability in terms of mean relative abun-

dance across the mountain plover’s range. Our estimates of

relative abundance on a per hectare basis were �0Æ20–0Æ30
birds ha–1. Others have found abundances as high as 1Æ56
birds ha–1 (assuming 1Æ6 ha patches) in Colorado (Dreitz,

Fig. 3. Spatially explicit posterior mean pre-

dictions of mountain plover relative abun-

dance in the panhandle of Nebraska for the

2005–2007 breeding seasons. Open circles

represent count locations where no birds

were detected. Triangles represent locations

where one or more birds were detected. Grid

cells represent 2Æ56 km2 agricultural sections.

Map scale is inmetres.
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Lukacs & Knopf 2006) and as low as 0Æ003 birds ha–1 in Okla-

homa (McConnell et al. 2009). One possible explanation for

this heterogeneity could be related to the methods of sampling

and detection correction applied across the various surveys.

Our study and that of Dreitz, Lukacs & Knopf (2006) both

used a multiple revisit method of sampling and similar statisti-

cal methods. Plumb, Knopf & Anderson (2005) and Wunder,

Knopf & Pague (2003) used distance sampling which requires

a different sampling strategy and different statistical approach.

Finally, McConnell et al. (2009) used a point count sampling

approach and post hoc detection correction method, and Tip-

ton, Doherty & Dreitz (2009) used a probability based sam-

pling approach and a design based method of deriving

abundance. Therefore, comparing multiple studies suggests

that we may not clearly know whether abundance differences

are attributable to a biological signal or whether these

differences are attributable to variation in field and statistical

methods.

SPATIAL PREDICTIONS

Without spatially explicit predictions we would have to esti-

mate total mountain plover abundance in Nebraska by assum-

ing that our model could be used to predict abundance at

unobserved locations (i.e. extrapolation), which could lead to

unreliable estimates. Instead, we estimated the spatial structure

of abundance using the data and constructed predictions at

unobserved locations between observed locations (i.e. interpo-

lation). In many of the studies previously mentioned, total

population estimates were arrived at using extrapolated esti-

mates of density. However, our total population estimates for

Nebraska, based on interpolated values, are less than those for

Colorado (Wunder, Knopf & Pague 2003; Tipton, Doherty &

Dreitz 2009) and Montana (Dinsmore, White & Knopf 2003),

and are generally more uncertain. This was to be expected

because ignoring spatial autocorrelation can result in biased

parameter estimates and misleading inferences (Legendre

1993; Dormann 2007; Beale et al. 2010).

Our study was unable to tease apart the broader reasons for

the spatial structuring in our data. Spatial structuring could be

driven by either extrinsic (e.g. environmental or geomorphic)

factors or intrinsic (e.g. behavioural or phenotypic) factors.

Because habitat variables did not adequately account for the

variability in our data it is likely that much of the intrinsic and

extrinsic structuring was swept into the spatial autocorrelation

term. Therefore, it could be that the temporal variation in our

spatial predictions was caused by interacting static and

dynamic spatial processes. Additionally, including a spatial

error term, as we did, does not necessarily mean that we

accounted for all of the spatial variation in our data. For

instance, Wintle & Bardos (2006) show that including a spatial

autocorrelation term in a model reduces residual spatial error

in data with intrinsic structuring, but not completely. Thus, it

is possible that there may be lingering spatial variation in our

data that we did not account for. The way to solve this would

be to include additional linear and non-linear spatially indexed

covariates in our abundance models and utilize the Bayesian

model averaging approach to compare the performance of

those additional predictors.

Despite this, we can view our relative spatial predictions as

measures of habitat quality if we assume that the number of

birds in a section is proportional to the number and quality of

habitat patches in a section (Fretwell & Lucas 1970). Treating

our corrected mean estimate of relative abundance as a

Poisson random variable representing birds per section (our

unit of prediction), we could expect to find one to two moun-

tain plovers in each section, but could occasionally find amaxi-

mum of five. When we consider the spatial heterogeneity in

mountain plover habitat use, as measured by our map, we

might expect to see as many as ten birds in some sections and

almost none in others. This is interesting biologically, because

ourmean abundance estimate suggests that, in the absence of a

spatial process, mountain plovers should be spacing them-

selves so that their densities are fairly low (around 1–2 birds

per section). This would only work if there were one or two

high quality patches in each section. If we drew inferences from

only this value we might have expected that an increase in the

abundance of mountain plovers would lead to more sections

being occupied by individuals. In terms of management, this

would be an important aspect of mountain plover biology to

understand because it should inform the scale at which

management is applied. In the case of mountain plovers, this

would suggest that a larger area was necessary to increase the

population.

However, this is not what our results indicate. Our spatial

predictions show that the number of mountain plovers in some

sections increased. We might expect this result if something

were improving the number of high quality patches within each

section. One potential explanation for this within-section

increase could be that mountain plovers were selecting nesting

sites in response to nest success (Greenwood 1980). Ourmodel-

ling results indicated that nest management had little effect on

our estimates of relative abundance. This is likely to be due to

the fact that few of the sites where nests were marked corre-

sponded to survey locations. However, the survey locations

with the highest predicted numbers of mountain plovers in our

2007 map overlap the regions where the highest densities of

nests were found between 2004 and 2007 (B. Bly, unpublished

data). If we compare the average predicted abundances

between sections that contained marked nests (1Æ51) and those

that did not (0Æ89) we see that plover abundance is slightly

higher in the managed sections. Bly, Snyder & VerCauteren

(2008) also found that the observed number of mountain plo-

ver nests in these sections had increased from 49 nests in 2005

to 112 nests by 2007. Average nest success rates in this region

are high (�75%) and similar between years (B. Bly, M. Post

vanderBurg,A.Tyre,L.Snyder,J. Jorgensen&T.Vercauteren,

unpublished data). However, we are still unsure whether

these sections contain some as yet unobserved habitat char-

acteristic that could be attracting breeding plovers, thus giv-

ing the impression that the increase in abundance is due to

management efforts.

Knowing this information would be particularly useful in

a largely homogeneous landscape like our study area. Our
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analysis suggested that small-scale conservation programmes,

which tend to bemore expensive in terms ofmoney and labour,

might be more beneficial for some subsets of the continental

population of mountain plovers. This might be particularly

true when preferred habitats, such as prairie dog Cynomys

ludovicianus colonies, are nearly absent from the landscape.

The population level benefit of management could also vary

with regional shifts in preferred tillage techniques.

Variation in the value of management strategies across a

species’ range raises questions of where to put conservation

effort, rather than how to implement it across the landscape.

Conservation practices certainly accrue greater benefit when

they are coordinated at larger scales (Kark et al. 2009). The

types of conservation practices for migratory species like

mountain plovers appear fragmented from one region to

another. Federal and regional agencies can make recommen-

dations, but have no regulatory authority to compel state

agencies or funding bodies to direct funds to species where the

greatest local benefit would accrue. Our study does not pro-

vide ‘rules-of-thumb’ for low density population management,

but it does provide a modelling framework to study spatial

variation that can be used to target management across the

landscape. Considering the variability in approaches and

methods for surveys and analysis of population trends, we

suggest that a more synthetic study of these methodologies is

warranted.
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